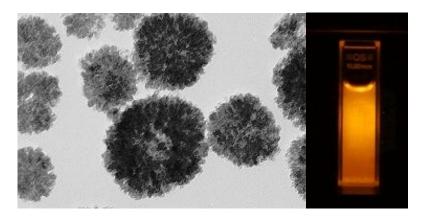
Ionic Liquid Mediated Synthesis and Surface Modification of Multifunctional Mesoporous Eu:GdF₃ Nanoparticles for Biomedical Applications

Sonia Rodriguez-Liviano,

Instituto de Ciencia de Materiales de Sevilla (CSIC-US), Americo Vespucio 49, Isla de La Cartuja, 41092 Sevilla, Spain

Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Mariano Esquillor s/n, Zaragoza, 50018, Zaragoza, Spain

sonia.rodriguez@icmse.csic.es


Abstract

A procedure for the synthesis of multifunctional europium(III)-doped gadolinium(III) fluoride (Eu:GdF $_3$) nanoparticles (~85 nm) with quasispherical shape (Fig. 1, left) by precipitation at 120 °C from diethylene glycol solutions containing lanthanide chlorides and an ionic liquid (1-Butyl, 2- methylimidazolium tetrafluoroborate) as fluoride source has been developed [1]. These nanoparticles were polycrystalline and crystallized into a hexagonal structure, which is unusual for GdF $_3$. They were also mesoporous (pore size = 3.5 Å), having a rather high BET surface area (75 m 2 g $^{-1}$). The luminescent (Fig. 1, right) and magnetic (relaxivity) (Fig. 2) properties of the Eu:GdF $_3$ nano- particles have been also evaluated in order to assess their potentiality as "in vitro" optical biolabels and contrast agent for magnetic resonance imaging. Finally, a procedure for their functionalization with aspartic-dextran polymers is also reported. The functionalized Eu:GdF $_3$ nanoparticles presented negligible toxicity for Vero cells (Fig. 3), which make them suitable for biotecnological applications.

References

[1] S. Rodriguez-Liviano, N. O. Nuñez, S. Rivera, J. M. de la Fuente, and M. Langmuir, **29** (2013), 3411-3418

Figures

Figure 1 – Left: TEM image of the nanoparticles prepared by heating at 120 °C for 15 h, DEG solutions containing 0.019 mol dm $^{-3}$ of GdCl $_3$, 0.001 mol dm $^{-3}$ of EuCl $_3$ [Eu/(Eu + Gd) mol ratio = 0.05], and 40% by volume of BMIMBF $_4$. Right: Photograph taken under UV illumination for the Eu $_{0.05}$ Gd $_{0.95}$ F $_3$ nanophosphor in water suspension.

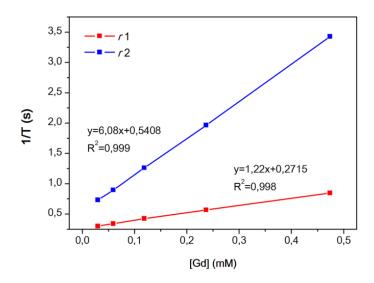
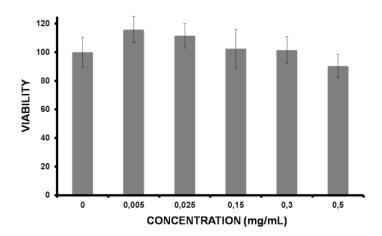



Figure 2 - Proton relaxivities (r₁ and r₂) measured for the Eu:GdF₃ nanophosphor at 1.5 T.

Figure 3 – Cytotoxicity profiles of functionalized nanoparticles with Vero cells, as determined by MTT assay. Percentage of viability of cells was expressed relative to control cells (n = 5). Results are represented as mean \pm standard deviations.